
Terraform CLI Cheat Sheet

About Terraform CLI

Terraform, a tool created by Hashicorp in 2014, written in Go, aims
to build, change and version control your infrastructure. This tool
have a powerfull and very intuitive Command Line Interface.

Installation

Install through curl

$ curl -O https://releases.hashicorp.com/terraform/
0.11.10/terraform_0.11.10_linux_amd64.zip
$ sudo unzip terraform_0.11.10_linux_amd64.zip
 -d /usr/local/bin/
$ rm terraform_0.11.10_linux_amd64.zip

OR install through tfenv: a Terraform version manager

First of all, download the tfenv binary and put it in your PATH.

$ git clone https://github.com/Zordrak/tfenv.git
 ~/.tfenv
$ echo 'export PATH="$HOME/.tfenv/bin:$PATH"'
 >> $HOME/bashrc

Then, you can install desired version of terraform:

$ tfenv install 0.11.10

Usage

Show version

$ terraform --version
 Terraform v0.11.10

Init Terraform

$ terraform init

It’s the �rst command you need to execute. Unless, terraform
plan, apply, destroy and import will not work. The command
terraform init will install :

terraform modules

eventually a backend

and provider(s) plugins

Init Terraform and don’t ask any input

$ terraform init -input=false

Change backend con�guration during the init

$ terraform init -backend-config=cfg/s3.dev.tf -
reconfigure

-reconfigure is used in order to tell terraform to not copy the
existing state to the new remote state location.

Get

This command is useful when you have de�ned some modules.
Modules are vendored so when you edit them, you need to get
again modules content.

$ terraform get -update=true

When you use modules, the �rst thing you’ll have to do is to do a
terraform get. This pulls modules into the .terraform directory.
Once you do that, unless you do another terraform get -
update=true, you’ve essentially vendored those modules.

Plan

The plan step check con�guration to execute and write a plan to
apply to target infrastructure provider.

$ terraform plan -out plan.out

It’s an important feature of Terraform that allows a user to see
which actions Terraform will perform prior to making any changes,
increasing con�dence that a change will have the desired effect
once applied.

When you execute terraform plan command, terraform will scan
all *.tf �les in your directory and create the plan.

Apply

Now you have the desired state so you can execute the plan.

$ terraform apply plan.out

Good to know: Since terraform v0.11+, in an interactive mode (non
CI/CD/autonomous pipeline), you can just execute terraform
apply command which will print out which actions TF will
perform.

By generating the plan and applying it in the same command,
Terraform can guarantee that the execution plan won’t change,
without needing to write it to disk. This reduces the risk of
potentially-sensitive data being left behind, or accidentally
checked into version control.

$ terraform apply

Apply and auto approve

$ terraform apply -auto-approve

Apply and de�ne new variables value

$ terraform apply -auto-approve
-var tags-repository_url=${GIT_URL}

Apply only one module

$ terraform apply -target=module.s3

This -target option works with terraform plan too.

Destroy

$ terraform destroy

Delete all the resources!

A deletion plan can be created before:

$ terraform plan –destroy

-target option allow to destroy only one resource, for example a
S3 bucket :

$ terraform destroy -target aws_s3_bucket.my_bucket

Debug

The Terraform console command is useful for testing
interpolations before using them in con�gurations. Terraform
console will read con�gured state even if it is remote.

$ echo "aws_iam_user.notif.arn" | terraform console
arn:aws:iam::123456789:user/notif

Graph

$ terraform graph | dot –Tpng > graph.png

Visual dependency graph of terraform resources.

Validate

Validate command is used to validate/check the syntax of the
Terraform �les. A syntax check is done on all the terraform �les in
the directory, and will display an error if any of the �les doesn’t
validate. The syntax check does not cover every syntax common
issues.

$ terraform validate

Providers

You can use a lot of providers/plugins in your terraform de�nition
resources, so it can be useful to have a tree of providers used by
modules in your project.

$ terraform providers
.
├── provider.aws ~> 1.24.0
├── module.my_module
│ ├── provider.aws (inherited)
│ ├── provider.null
│ └── provider.template
└── module.elastic
 └── provider.aws (inherited)

https://www.hashicorp.com/

State

Pull remote state in a local copy

$ terraform state pull > terraform.tfstate

Push state in remote backend storage

$ terraform state push

This command is usefull if for example you riginally use a local tf
state and then you de�ne a backend storage, in S3 or Consul…

How to tell to Terraform you moved a ressource in a
module?

If you moved an existing resource in a module, you need to update
the state:

$ terraform state mv aws_iam_role.role1 module.mymodul

How to import existing resource in Terraform?

If you have an existing resource in your infrastructure provider,
you can import it in your Terraform state:

$ terraform import aws_iam_policy.elastic_post
arn:aws:iam::123456789:policy/elastic_post

Workspaces

To manage multiple distinct sets of infrastructure
resources/environments.

Instead of create a directory for each environment to manage, we
need to just create needed workspace and use them:

Create workspace

This command create a new workspace and then select it

$ terraform workspace new dev

Select a workspace

$ terraform workspace select dev

List workspaces

$ terraform workspace list
 default
* dev
 prelive

Show current workspace

$ terraform workspace show
dev

Tools

jq

jq is a lightweight command-line JSON processor. Combined with
terraform output it can be powerful.

Installation

For Linux:

$ sudo apt-get install jq

or

$ yum install jq

For OS X:

$ brew install jq

Usage

For example, we de�nd outputs in a module and when we execute
terraform apply outputs are displayed:

$ terraform apply
...
Apply complete! Resources: 0 added, 0 changed,
 0 destroyed.

Outputs:

elastic_endpoint = vpc-toto-12fgfd4d5f4ds5fngetwe4.
eu-central-1.es.amazonaws.com

We can extract the value that we want in order to use it in a script
for example. With jq it’s easy:

$ terraform output -json
{
 "elastic_endpoint": {
 "sensitive": false,
 "type": "string",
 "value": "vpc-toto-12fgfd4d5f4ds5fngetwe4.
 eu-central-1.es.amazonaws.com"
 }
}

$ terraform output -json | jq '.elastic_endpoint.value
"vpc-toto-12fgfd4d5f4ds5fngetwe4.eu-central-1.
es.amazonaws.com"

Terraforming

If you have an existing AWS account for examples with existing
components like S3 buckets, SNS, VPC … You can use
terraforming tool, a tool written in Ruby, which extract existing
AWS resources and convert it to Terraform �les!

Installation

$ sudo apt install ruby or $ sudo yum install ruby

and

$ gem install terraforming

Usage

Pre-requisites :

Like for Terraform, you need to set AWS credentials

$ export AWS_ACCESS_KEY_ID="an_aws_access_key"
$ export AWS_SECRET_ACCESS_KEY="a_aws_secret_key"
$ export AWS_DEFAULT_REGION="eu-central-1"

You can also specify credential pro�le in ~/.aws/credentials_s and
with _–pro�le option.

$ cat ~/.aws/credentials
[aurelie]
aws_access_key_id = xxx
aws_secret_access_key = xxx
aws_default_region = eu-central-1

$ terraforming s3 --profile aurelie

Usage

$ terraforming --help
Commands:
terraforming alb # ALB
...
terraforming vgw # VPN Gateway
terraforming vpc # VPC

Example:

$ terraforming s3 > aws_s3.tf

Remarks: As you can see, terraforming can’t extract for the
moment API gateway resources so you need to write it manually.

Authors :

@aurelievache
Cloud Dev(Ops) at Continental

v1.0.2

https://twitter.com/aurelievache

